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i. In classical Prandtl theory it is postulated that the outer inviscid flow is inde- 
pendent of flow in the boundary layer. However, this postulate is not always valid. For 
example, in some conditions of hypersonic flow over bodies one observes strong interdepen- 
dence between the inviscid and the viscous flows (the moderate and strong interaction regimes 
[i]). 

The mathematical formulation for the strong viscous-inviscid interaction regime differs 
from that of the classical boundary layer problem. The parabolic system of boundary layer 
equations allowing for the induced pressure gradient interaction has the property of weak 
ellipficity. This property is the mathematical reflection of the physical process of propa- 
gation of perturbations upstream. Study of solutions of flow in the strong interaction re- 
gime has shown that perturbations can be propagated upstream to distances comparable with 
the length of the wetted body. Flows with this type of propagation of perturbations are 
conventionally called flows with interaction of subcritical type [2]. However, one also ob- 
serves situations where the extent of the propagation of perturbations is limited to several 
boundary layer thicknesses. This localization of perturbations is typical of flows with 
interaction of supercritical type [3]. Investigations have shown that the parameter govern- 
ing the nature of propagation of perturbations, and thereby the type of interaction, is a 
certain mean integral Mach number in the boundary layer. This parameter, obtained earlier 
in the study of internal inviscid flows, is called the Pearson number [4]. 

In conditions where the viscous-inviscid interaction plays a governing role the flow 
can have interaction regions of both subcritical and supercritical type. This situation is 
observed in symmetric hypersonic flow over a flat plate of finite length and zero thickness, 
investigated in this study. Here subcritical interaction is found in the boundary layer over 
the plate and at some distance in the wake behind it. The gradual acceleration of the gas 
under the influence of viscous forces near the trailing edge leads to conditions where at 
some section of the wake the mean integral Mach number becomes equal to 1 (the Pearson num- 
ber goes to zero). Downstream of this section one finds the supercritical type of inter- 
action. 

This process has much in common with one-dimensional flow of an inviscid gas in a Laval 
nozzle, where the flow is accelerated smoothly to be supersonic at the nozzle exit. From 
the theory of one-dimensional flow of an inviscid gas it is known also that an excess pres- 
sure over the nominal value at the nozzle exit leads to transition of the flow from super- 
sonic to subsonic, with a shock wave forming downstream of the nozzle exit. Further in- 
crease of pressure is accompanied by displacement of the shock up to the nozzle throat. 

In this paper we have studied how increasing pressure in the wake section correspond- 
ing to the right hand boundary of the computed region affects the nature of the entire flow. 
A pressure increase in the wake can be caused by the presence of a body in the wake behind 
a flat plate or by a compression shock incident on the wake. It has been determined that by 
assigning a wake pressure exceeding a certain value one can formulate a solution that can be 
treated as discontinuous. This discontinuity is accompanied by a change of the type of in- 
teraction to subcritical with a subsequent smooth pressure transition to the assigned value. 
Thus, in this aspect one observes the analogy between hypersonic flow in the wake and flow 
in the nozzle [5]. One should remember that the discontinuity obtained is not the usual gas- 
dynamic shock. In spite of the analogy with one-dimensional inviscid flow, the flow in the 
wake is substantially two-dimensional. And only the mean characteristics of this flow, aver- 
aged over the wake cross sections, justify it being considered as subcritical (subsonic) or 
supercritical (supersonic). Taking account of the above statements, when the term disconti- 
nuity is used in this paper it should be considered as being in quotation marks. 
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For the weak interaction regime a discontinuous solution was obtained in [6]. It was 
shown that for small values of the surface temperature factor the interaction type cannot 
change due to the small pressure drop. This is due to the nonlinear variation of the func- 
tions in the wall sublayer against the background of the linear variation in the main part 
of the boundary layer. In contrast with [6] in this paper we have studied regimes where a 
finite pressure drop causes a nonlinear variation over the entire boundary layer thickness. 

2. We now consider the problem of hypersonic flow over a flat plate of zero thickness 
and in the syn~metrical wake behind it. We postulate that the characteristic Reynolds n~nber 
Re has a large but subcritical value, so that the flow in the boundary layer and in the wake 
is laminar. We postulate that the regime is the strong viscous-inviscid interaction, which 
is valid for high enough values of incident flow Mach number. 

Everywhere below the superscript 0 denotes dimensional values, and subscripts ~ and c 
denote parameters of the incident stream and characteristic values. 

To derive the dimensionless equations of the hypersonic boundary layer one must normalize 
all the variables appearing in the original full Navier-Stokes equations by the appropriate 
characteristic values, according to the rule ~~176 y0) = ~c0~(x, y). By normalization in 
this case we mean the derivation of dimensionless variables, allowing for their order of mag- 
nitude in the flow region considered. The normalizing factors ~c ~ depend on the plate length 
s the velocity u~ ~ and the density p 0 of the incident stream, and the small parameter 
d c << 1, which is the characteristic slope angle of the outer edge of the unperturbed bound- 
ary layer. According to [i] the following values are characteristic: for the rectangular 
coordinates - Xc ~ = s yc 0 = dcs for the velocity components - Uc ~ = u~ ~ Vc ~ = dcu~ ~ 

for the density - pc ~ = dc=P= ~ for the static pressure - pc ~ = dc2p~~ ~ and for the total 

enthalpy - hc D = u~~ It can be shown that in this normalization for the total enthalpy 

it is appropriate to use the quantity tc ~ = u~~ ~ (Cp ~ is the specific heat at constant 

pressure) as the characteristic value of absolute temperature. Then, taking into account 
the power law dependence of dynamic viscosity on absolute temperature adopted here we need 
to know the quantity Bc ~ = D~176 as a characteristic for it. 

The hypersonic boundary layer equations can be obtained by substituting these normalized 
variables into the full Navier-Stokes equations. To do this it is enough to accomplish the 
limiting transition for Re = p~~176163176176 § ~, requiring here that the convective term and 
the main viscous term of the momentum equation have the same order of magnitude. The typical 
slope angle of the outer edge of the boundary layer, for which this condition holds, is linked 
to the Reynolds number by the relation d c = Re -I~4. 

The system of equations and the boundary conditionsfor the viscous part of the shock 
layer in normalized variables takes the form (the subscripts x and y denote partial deriva- 
tives with respect to the corresponding variable): 

(pu)~ + (pv)y = O, puu~ + pvg,j 4- p.~ = (~uy)y, 

"~T) [~ (u~)~lY' i (I I puh~ + evh~ = ~ (~,~l~)y -I'- - -  

YL 

t - -  i ( h  - -  u2)% d dg, p =  ~ p ( h - - u 2 ) ,  ~t= = .  
o 

y = 0 :  U = u = h - - h B  = 0  , O ~ x ~ t ,  

v =  uy = b y  = 0 ,  I < x ,  

g =  gL: U = h =  t, O ~ x .  

(2 .1)  

Here ~ is the specific heat ratio for a perfect gas; Pr is the Prandtl number; m is the ex- 
ponent in the dependence of dynamic viscosity on temperature (later on ~ = i); the subscripts 
B and L refer to values of the variables on the plate surface and at the outer edge of the 
viscous layer. 

A relation to close the system (2.1) can be obtained using the tangent wedge method [i] 
widely applied in practical computations. This method links the pressure with the local 
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slope of the stream lines from the incident flow direction~ According to the conventional 
concept of an "efficient" body, this stream line slope is formed by the pulling action of 
the plate boundary layer and the wake behind the plate. In the strong viscous-inviscid in- 
teraction regime postulated here is it easy to obtain a relation for the pressure: 

P = ----y- (d~) ~-" ( 2 . 2 )  

To solve the problem on a computer it is appropriate to introduce dimensionless vari- 
ables which will not only eliminate the boundary layer density from the equations but will 
also assign a rectangular shape to the computing region. From the computing viewpoint it is 
also convenient to use dependent variables accounting for the nature of the behavior of 
functions in the immediate vicinity of the plate leading edge and the well-known Lees-Stew- 
artson similarity solution [i]. These requirements are satisfied by the variables 

Y 

X = x, Y = clx-1/a S 9d~t' U = U,  H = ]2, P = x l / 2 p ,  

0 

V --- x ( l t Y  x -~  c l x -1 /4pu ) ,  D . x-a/~d, Dr. = x-a/~dL. 

Written in these variables the system (2.1), Eq. (2.2), the boundary conditions and 
also the auxiliary relations take the form 

V r + ( i / 4 ) U  q- X U x  = O, 

X U U x  + V U  r '~. cl(G - -  ( i / 2 ) ) ( H  - -  U 2) = clPUy~.  , 

X U H  x ~ V H y  : c:tP[colHYr -~ Clo ( U 2 ) y z ] ,  

Y - - O :  V =  U = H - - H B  = 0 ,  O < ~ X < ~ l ,  

V = U y  = H  r =:0 ,  i < X ,  
Y = Y L :  U = H - - : t ,  O < ~ X ,  

YL Y L  

S L =  R l d Y ,  S ~ =  . I~ I _ R 2  dY,  
0 0 

R1 = H - -  U 2, R 2 -= H - coU 2, 

D = D L =- SL /P  , P = c2(XD x -}- (3/4)D) ~, 

G = X P x / P  = 2 ( X 2 D x x  + ( 7 / 4 ) X D x ) / ( X D  x + (3/4)D),  

c o = (• @ t ) / ( •  l ) , c  1 = ( •  t ) /2•  e2 =- (• @ 1)/2, 

%1 = I / P r ,  Clo = I - -  Cop 

( 2 . 3 )  

The integral SM(X ) enters as a multiplier in the expression for the Pearson number and deter- 
mines its sign. Negative values of this integral correspond to the supercritical type of 
interaction, and positive values correspond to the subcritical type. 

The central item in solving this problem is the procedure to seek the thickness distri- 
bution of the effective body such that when the procedure is finished the thickness coin- 
cides with the viscous layer displacement thickness in the entire computedregion, including 
the boundary layer on the plate and the wake. A detailed description of the procedure for 
seeking the matching effective body thickness can be found in [7]. 

3. For the rest of the paper the flow parameters ahead of the shock and behind it are 
denoted by subscripts - and +, respectively. The first hypothesis made in analyzing the dis- 
continuity is that the characteristic distance in which the sharp pressure variation occurs 
is small. The second hypothesis, flowing naturally from the first, is that the thickness of 
the wake behind the discontinuity equals that of the wake ahead of it, to a first approxima- 
tion. Otherwise the flow scheme would not be self-matching since a variation of wake thick- 
ness in a small distance would lead to a large induced pressure and to separation of the 
plate boundary layer. The third hypothesis is linked to conservation of enthalpy along the 
stream lines as they pass through the discontinuity. This hypothesis results from using a 
single system of equations (2.3) in the entire computing region. The appearance of a discon- 
tinuous solution is linked to formation of a region with large local gradients. In the gen- 
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eral case the flow in this region is described by the Euler system of equations. The solu- 
tion obtained from the original system of equations (2.3) without removing the discontinuity 
does not satisfy the integral condition of conservation of momentum. In fact, for the action 
of a finite pressure drop (on a scale characteristic for the boundary layer and the wake) the 
area of transverse section of an arbitrary stream tube varies by an order of magnitude. 111 
these conditions one must account for the influence of the pressure distribution over the 
lateral surface of the stream tube. This influence is computed correctly in the system of 
Euler equations containing a nondegenerate transverse momentum equation. One can postulate 
different procedures for finding the link between solutions to the left and right of the dis- 
continuity; a description of these procedures falls outside the scope of this paper. 

Accounting for the first of the above hypotheses we can reduce the system of equations 
(2.3) to the form 

Vr _a (t/4)U + X U  x = O, 

x u u x  + v u y  -- c1(  - ( l / 2 ) ) ( t t  - u = o, xu Ix + v l t r  = o. (3.1) 

Converting in system (3.1) from the variables X, Y to the variables X, F, we have 

0 

With the aid of the third hypothesis it is easy to obtain a solution of this system of 
equations linking the values of the function in front of and behind the discontinuity: 

H +  = - - U L ) ,  H §  = H _ .  ( 3 . 2 )  

Here the parameter PN = P+/P- describes the pressure drop in the "shock." The first equation 
of (3.2) can be interpreted as the gas temperature rise in passing through the shock, and the 
second equation expresses the constancy of total enthalpy along a fixed stream tube. 

By considering the as yet unused hypothesis that the wake thickness is constant in tran- 
sition through the shock we can formulate a relation to determine the so-called critical 
pressure drop PN* leading to change of supercritical interaction to subcritical: 

& ( x ) =  s . , - ( x ,  

Y_ 

sL(x)= 5 
0 

Y_ 
( i t ,  - v _  

S.,- (X, P,,-) = /~ 1-1 t[ [ H  -- p2;1 ( H  -- U2__)] 1/2 
0 

dY_. 

(3.3) 

For small values of the pressure drop this change is possible only where the wake flow is 
transonic on the average and where a change of the thickness of the supersonic part of the 
wake is accurately compensated for by a change of opposite sign of the thickness of the sub- 
sonic part, under the action of even a small pressure perturbation. In the region of devel- 
oped supercritical flow the change of thickness of the supersonic part under the action of a 
small pressure perturbation becomes dominant, and now is not compensated for by a change of 
the thickness of the subsonic part. The action of a finite pressure drop on the supercriti- 
cal flow leads to a completely different effect. Since the velocity head is less in the sub- 
sonic part of the wake than in the supersonic part, the relative variation of its thickness 
under the action of a finite drop can be compared with the variation of the thickness of the 
supersonic part. The region of application of the model examined is limited to pressure drop 
values not large enough to cause reverse flow to appear. 

4. Calculations were performed for a monatomic perfect gas with ratio of specific heats 
K = Cp~ ~ = 5/3 at unit values of Prandtl number and surface temperature factor. This 
choice of initial parameters stemmed from the need to approve the method of [7] in the prob- 
lem formulated, as a typical problem with a discontinuity of the boundary conditions, with a 
maximum sensitivity of the computed functions to the downstream conditions that is unfavor- 
able from the computing standpoint. The broken lines on the figures show the corresponding 
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similarity distributions of the flow functions on a semi-infinite flat plate. The difference 
mesh had the following parameters: the step sizes and their number in the longitudinal di- 
rection were DX = 0.016, L = 125, and in the transverse direction DY = 0.125, M = 50. The 
difference scheme approximated equations with first order in the longitudinal coordinate and 
second order in the transverse coordinate. 

Figure 1 shows the longitudinal static pressure distribution on the plate and in the 
wake. The mutual ejector action of the parts of the flow on the two sides leads to a pres- 
sure drop in the wake compared with the similarity distribution for a semi-infinite plate. 
The propagation of perturbations effect [2] leads to the pressure drop associated with the 
finite length of the plate occurring quite smoothly as one draws near to the trailing edge 
of the plate, not discontinuously. The extent of this region is approximately four plate 
lengths. On the other hand, the pressure rise to the previously assigned value at the right 
hand edge of the computing region (later on we shall conventionally call this the back pres- 
sure) occurs discontinuously, i.e., the main portion of the pressure increase occurs in a 
comparatively short section of the wake. As the back pressure increases this discontinuity 
moves towards the plate trailing edge, and becomes then increasingly blurred. Blurring of 
the discontinuity is explained by increased action of viscous forces as one approaches the 
trailing edge. The back pressure level is described by the parameter Pw. It is the ratio 
of the previously assigned pressure at the wake section at the right hand edge of the com- 
puting region to the pressure that would be formed at the same section but with flow over a 
semi-infinite plate (in Figs. i, 2, 4, and 6 lines 1-3 correspond to Pw = 2.75, 2.50, 2.25). 

In contrast to the pressure, the boundary layer thickness, which coincides with the dis- 
placement thickness in the strong interaction regime, reacts weakly to a change of back pres- 
sure (Fig. 2). It increases practically over the entire plate length according to the well- 
known 0.75 power law [i], and only in the immediate vicinity of the trailing edge does the 
flow acceleration lead to an insignificant drop in thickness compared with the similarity 
distribution. An increase of back pressure leads to an increase of wake displacement thick- 
mess. 

The flow acceleration near the trailing edge leads to a substantial increase of the 

~176 the plate surface (Fig. 3) In the range of back local friction factor c/= ~ a-~j0/ on 
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pressure considered the distribution of surface friction along the plate remains unchanged. 
The fact is that the flow change from the plate to the wake is accompanied by a strong accel- 
eration, mainly of the near-wall stream. This leads to a blocking off of the flow in a sec- 
tion of the wake located at a small distance from the trailing edge of the plate. Perturba- 
tions from the region lying downstream of this section are not propagated upstream. This is 
why the surface friction on the plate is independent of the back pressure (in the range of 
change of Pw examined). 

An increase of back pressure leads to a discontinuous drop of the longitudinal velocity 
component on the wake axis Uw ~ (Fig. 4), and for Pw = 2.75 the value of this component is 
close to zero. Figure 5 shows lines of constant Mach number computed from local values of 
the sound speed, Ma = u~176176 I/2. On the lower half surface iso-Mach lines are drawn 
for Pw = 2.25, and on the upper half surface lines are drawn for Pw = 2.75. The subsonic 
regions are shaded. An increase of back pressure leads to transition of a large region of 
the wake to the subsonic flow regime. Here the shape of the subsonic region adjacent to the 
plateremains unchanged. The strong acceleration near the trailing edge leads to supersonic 
flow even in a small distance. 

Figure 6 shows the distributions of the critical pressure drop PN* over sections of the 
wake, computed for different Pw" With increasing distance from the trailing edge the wake 
flow is accelerated and its interaction with the outer inviscid flow acquires a more devel- 
oped supercritical nature. As one would expect, for transition of this flow to the subcriti- 
cal regime, according to the criterion of Eq. (3.3), with increasing distance into the wake 
one must add anincreasingly unfavorable pressure gradient. We note that the pressure drop 
sufficient for transcritical transition is unity as in the wake section, where the integral 
SM(X) goes to:zero, and for which the change of sign corresponds to a change of the type of 
interaction. 
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